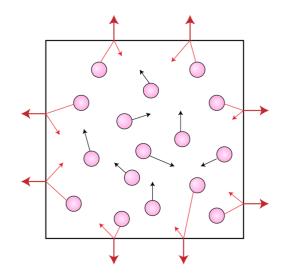
C_P , C_V , γ and Specific heat



Law of equipartition of energy

Energy supplied to a system is equally distributed amongst all the available degrees of freedom associated with each atom/molecule of the system.

Average kinetic energy of each atom of a mono-atomic gas is

$$\langle KE \rangle = \frac{3}{2}k T$$

Root mean square velocity of each atom/molecule is related to components as

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

Total kinetic energy associated with motion of each atom/molecule may be understood as

$$\frac{1}{2}mv_x^2 + \frac{1}{2}mv_x^2 + \frac{1}{2}mv_x^2 = \frac{3}{2}kT$$

Contribution of each mode of motion (or degree of freedom) to the total energy of the atom/molecule is given by

$$Energy_{\text{per entity and degree of freedom}} = \frac{1}{2}k T$$

C_{ν} , C_{P} and γ for a monoatomic gas

Atom of an ideal mono-atomic gas has 3 degrees of freedom. (i.e. it is free to move such that its motion can be uniquely described by specifying three coordinates x, y and z).

Internal energy is the sum of kinetic energy of its atoms (contribution from potential energies is neglected).

$$Energy_{\text{per entity and degree of freedom}} = \frac{1}{2}k_{\text{B}}T$$

$$\langle KE \rangle_{\text{per atom}} = \frac{3}{2} k_{\text{B}} T$$

$$KE_{\text{total}} = N\frac{3}{2}k_{\text{B}}T$$
 i

$$U = nC_V T$$
 — ii

$$nC_V T = N \frac{3}{2} k_{\rm B} T$$

$$C_V = \frac{3}{2}R$$
 — iii

Using $C_P - C_V = R$ we get

$$C_P = \frac{5}{2}R$$
 iv

Using equation (iii) and (iv)

$$\gamma = \frac{5}{3}$$
 v

C_{ν} , C_{P} and γ for a diatomic gas (rigid)

Molecule of an ideal di-atomic gas has 5 degrees of freedom. (three coordinates x, y and z and rotations about two possible mutually perpendicular axes).

Internal energy is the sum of kinetic energy of its atoms (contribution from potential energies is neglected).

$$Energy_{\text{per entity and degree of freedom}} = \frac{1}{2}k_{\text{B}}T$$

$$\langle KE \rangle_{
m peratom} = \frac{5}{2} k_{
m B} T$$

$$KE_{\text{total}} = N \frac{5}{2} k_{\text{B}} T$$

$$U = nC_V T$$
 — ii

$$nC_{V}T = N\frac{5}{2}k_{\rm B}T$$

$$C_V = \frac{5}{2}R$$
 — iii

Using $C_P - C_V = R$ we get

$$C_P = \frac{7}{2}R$$
 iv

Using equation (iii) and (iv)

$$\gamma = \frac{7}{5}$$

C_V , C_P and γ for a diatomic gas (non-rigid)

Molecule of a diatomic non-rigid gas has 7 degrees of freedom. (three coordinates x, y and z, rotations about 2 mutually perpendicular axes and 2 modes of vibration).

Internal energy is the sum of kinetic energy of its atoms (contribution from potential energies is neglected).

$$Energy_{\text{per entity and degree of freedom}} = \frac{1}{2}k_{\text{B}}T$$

$$\langle KE \rangle_{\text{per atom}} = \frac{7}{2} k_{\text{B}} T$$

$$KE_{\text{total}} = N\frac{7}{2}k_{\text{B}}T$$

$$U = nC_V T$$
 — ii

$$nC_{V}T = N\frac{7}{2}k_{\rm B}T$$

$$C_V = \frac{7}{2}R$$
 — iii

Using $C_P - C_V = R$ we get

$$C_P = \frac{9}{2}R$$
 iv

Using equation (iii) and (iv)

$$\gamma = \frac{9}{7}$$
 v

C_{ν} , C_{P} and γ for a polyatomic gas

A polyatomic molecule, in general has 3 translational degrees of freedom, 3 rotational degrees of freedom and a certain number (f) of vibrational modes.

Using the law of equipartition of energy we get

$$U = \left(\frac{3}{2}k_{\rm B}T + \frac{3}{2}k_{\rm B}T + f \times k_{\rm B}T\right)N_{\rm A}$$

$$U = (3 + f)N_A k_B T$$

Using $U = nC_V T$ we get

$$C_{V} = (3+f)R$$
 ii

$$C_{P} = (4 + f)R$$
 iii

$$\gamma = \frac{C_{\rm p}}{C_{\rm V}} = \frac{\left(4 + f\right)}{\left(3 + f\right)} \quad - \text{iv}$$

Note (based on question in JEE / NEET)

- For a *n* number of modes of vibrations the degrees of freedom is 2*n*.
- Any diatomic molecule is treated as a rigid rotor (unless mentioned otherwise)

Specific heat capacity of solids

Consider a solid of N atoms. Each atom of the sample of solid vibrates about its mean position.

Average energy, per atom, associated with oscillation in one dimension is

$$\langle KE \rangle_{\rm per \, atom} = 2 \times \frac{1}{2} k_{\rm B} T$$
 $\langle KE \rangle_{\rm per \, atom} = k_{\rm B} T$

Considering all the three dimensions we get

$$\langle \mathit{KE} \rangle_{\mathrm{peratom}} = 3 k_{\mathrm{B}} T$$

Total energy of the atoms in a sample of one mole of solid is

$$U = 3k_{\rm B}N_{\rm A}T$$

$$C = 3R$$

The prediction generally agrees with experimental values at ordinary temperature

Specific heat capacity of water

Assume water to be a solid.

Average energy associated with each atom of water is $3k_{\rm B}T$.

Water molecule has three atoms, two hydrogen and one oxygen therefore

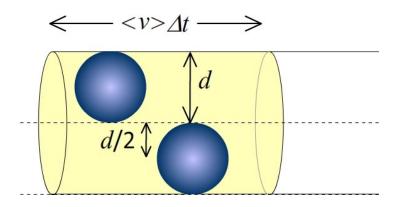
$$U = 3 \times 3 k_B T \times N_A$$

$$U$$
 = 9 RT

$$C = 9R$$

The prediction generally agrees with experimental values at ordinary temperature

Mean free path



Assume molecules of gas to be spherical with a diameter d. Let v be their average speed at a particular temperature.

Volume swept by the radius vector joining their centers is

volume =
$$\pi d^2 < v > \Delta t$$

If n_0 is the number of molecules per unit volume then the number of collisions that the molecule undergoes in this interval of time is

no. of collisions = $n \times \pi d^2 < v > \Delta t$

no. of collisions = $n \times \pi d^2 < v >$ per unit time

Time between successive collisions is therefore

$$\tau = \frac{1}{n \times \pi d^2 < v >}$$

Mean free path (λ) is given by $< v > \tau$ therefore

$$\lambda = \frac{1}{n \times \pi d^2}$$

A more accurate treatment considering v_{rel} gives

$$\lambda = \frac{1}{\sqrt{2} \, n \times \pi d^2}$$

Mean free path

Consider a gas at pressure P and absolute temperature T. Using ideal gas equation

$$PV = \mu RT$$

$$PV = \frac{N}{N_{\mathsf{A}}}RT$$

$$P = \frac{N}{V} \frac{R}{N_{\rm A}} T$$

$$P = n k_{\rm B} T$$

$$n = \frac{P}{k_{\rm B}T}$$

Mean free path was given by the relation

$$\lambda = \frac{1}{\sqrt{2} \, n \times \pi d^2}$$

Substituting the value of *n* we get

$$\lambda_{\text{mean}} = \frac{k_{\text{B}} T}{\sqrt{2\pi} d^2 P}$$

sigmaprc@gmail.com
sigmaprc.in